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Figure 1: Ubiquitous Controls lets users leverage affordances of everyday objects as input components, for example twiddling a
sauce bottle lid to control the seek position of a video while cooking (A). Ourmethod utilizes a capacitive mechanomyography
wristband to digitize single-handed prehensile interactions like sliding (B), stretching (C), squeezing (D), tripod pinching (E),
and rocking (F).

ABSTRACT
We are a group of HCI researchers from a capacitive technology
company, and we have been collaborating on hardware to enable
sensing the posture and anatomy of hands for use in mixed reality.
Through this process, we have been exploring the motion and
activity of hands; after discovering that our sensor is sensitive not
only to dynamic hand pose but also to tendon load (such as is caused
by holding or pressing on an object), we began exploring the idea
of using passive held or touched objects as support for gestural
input. Specifically, we are interested less in the passive haptics of
existing objects, and more in their interactive affordances.

This paper presents Ubiquitous Controls: a work-in-progress
input technique measuring interactions between users’ hands and
objects’ affordances powered by a wristband, which senses mus-
cle pose and motion using capacitive-based mechanomyography
(MMG). We use this technology to train machine learning models
that map continuous object interactions—like “twisting a bottle cap”
or “cutting with scissors”—to controls like dials or sliders.

Across 10 participants, our models discriminated between 6 ob-
ject interactions and identified the correct range state with mean
accuracies of 85.5–98.5 %. Furthermore, 8 users interactively con-
trolled UI widgets using objects and valued their haptic feedback
and enhanced state reproducibility over freehand gestures.
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We also discuss some opportunities and discovered pitfalls of
leveraging interactive affordances of everyday objects.
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1 INTRODUCTION
Weiser’s vision of ubiquitous computing [34] has computers fade
into the background of everyday life. The written word is a classic
example of a ubiquitous technology; books, newspapers, signs, and
many other objects are covered in text, offering information “at a
glance” without disrupting our attention. However, implementing
a high technology ubiquitous scenario is rife with challenges. Aug-
menting objects [16, 39] and surfaces [3, 35, 36] in our environment
requires infrastructure and maintenance (e.g., [40]). Similarly, im-
buing an everyday object with interactive potential often impacts
its form, design, and relationship with a user. The wires, sensors,
batteries, and PCBs that enable interaction place technology at the
forefront of a user’s attention. Although tablet computers and paper
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books can display the same literature, their user experiences are
different [30] and reflect how well their underlying technologies
have matured and faded into the periphery.

To approach the challenges of implementing ubiquitous inter-
actions at scale, we propose decoupling technology from devices
and focusing on ubiquitous sensing. Instead of instrumenting each
water bottle or elastic band with touch or deformation sensors, we
argue for understanding the dynamic interaction between a user’s
hand and a passive, everyday object. Sensing a hand’s grasp and
movement relative to an object means that a user can appropriate
its mechanical affordances as input. This allows leveraging devices
at hand for computational purposes—such as stretching a rubber
band to zoom a map or twisting a bottle cap to adjust volume level.

To sense a user’s manipulation of a broad set of objects, we use
a capacitive mechanomyography (MMG) wristband (see Figure 1).
This band senses small skin surface movements on the posterior
forearm caused by muscle and tendon activity near the wrist. With
machine learning, we can model these skin surface changes and
map them to hand and arm movement, allowing us to determine
when and how a user is grasping and manipulating an object. It
also enables ad hoc ubiquitous input controls by shifting sensing to
the wrist, instead of instrumenting individual objects with sensors.

2 RELATEDWORK
We briefly discuss existing work in ubiquitous and tangible com-
puting, as well as in wrist-worn sensing.

2.1 Interaction Paradigms
Ubiquitous computing [34] proposes a rich set of interaction paradigms
suggesting we leveraging the affordances [10] of physical devices
in UI design [31] and looking at everyday objects opportunistically
as input devices [15]. Similar to Instant Controls (ICon) [6], Instant
User Interfaces [7], and Ephemeral Interactions [33], our work ap-
propriates a wide range of everyday objects for interaction, but we
avoid the need to physically augment the objects or environment.

Pioneering work on graspable interfaces demonstrated repur-
posing and augmenting physical objects as tangible user interfaces
(TUIs) [9, 17]. We build on these ideas and Ishii and Ullmer’s vision
removing the distinction between passive and interactive devices
[20]; however, computation in every material is still a technical chal-
lenge in spite of proposed kits based on modular input/output [11]
or reuse of existing objects [2]. Thus, for the time being, other so-
lutions must be explored. BOXES proposes constructing physical
interfaces with readily-accessible materials [19]. With the intro-
duction of 3D printing, printing new devices can be just as easy.
Savage, et al., propose printing passive shapes and augmenting
them with capacitive sensors, cameras, or microphones [26, 28, 29],
and Pineal uses embedded mobile devices to bring printed objects
to life [23]. These are indeed a step in the right direction, but still
require planning, materials, and time. Our vision calls for a user’s
hand to be a ubiquitous sensor for any object which is printed,
assembled, or just picked up.

TUIs like URP [32] and Illuminating Clay [24] have explored
projection on surfaces to make both virtual content and UIs more
physical. Holman, et al.’s concept of organic user interfaces pushes
projection augmentation further, making the UI conform to object

shapes [18]. Using simple surfaces for interaction means designers
can create proxy objects from low cost materials such as styro-
foam or cardboard and transform them into UIs with a given shape,
as in DisplayObjects [1], and these kinds of augmentations can
be applied to multiple surfaces—at the cost of multiple cameras
and projectors [35, 36]—or to bodies, including in mobile scenar-
ios [13]. Annexing Reality [16] and Gripmarks [39] are closer to
our approach. Annexing Reality re-targets proxy shapes in the en-
vironment for haptic feedback in VR, and Gripmarks focuses on
graspable objects. While these approaches appropriate surfaces
for interaction and focus on shape affordance, our approach lever-
ages different objects’ mechanical affordances to enable ubiquitous
inputs.

2.2 Wrist-worn sensing for input
Smartwatches can monitor user activity using electromagnetic sig-
nals [22], EMG [8], or a mic and IMU [21]. This allows systems to
display contextual information but offers limited dynamic control
of interaction. Our work requires more minute activity monitoring
to precisely map gestures and poses to virtual controls. Several
wearable systems detect on-skin finger touches to interact with 2D
UIs or perform simple gestures [14, 37, 38]. While we also target
a wristband form factor, our approach leverages mechanomyogra-
phy [12] to measure motions and hand activity.

3 PROTOTYPE IMPLEMENTATION
Our Ubiquitous Controls prototype system encompasses both hard-
ware and software: we use a capacitive-based MMG wristband
and train machine learning classification and regression. In the
following section, we provide an interaction scenario and a system
overview.

3.1 Using Ubiquitous Controls
A user following a cooking tutorial video has missed a step. They
use a soy sauce bottle, which they happen to have at hand, as an
input device, rather than washing their hands to interact directly
with their computer (see Figure 2). They start by collecting samples
of their hand twisting the cap to various extremes (i.e., far left, far
right, centre): this data collection takes approximately 1 minute,
is only required once per object, and can be done ahead of time.
The samples of MMG and IMU data are sent to a classification
optimizer, which compares several machine learning configurations
to select two models. One separates “twiddling a bottle cap” from
other recorded controls, like “squeezing a toy” or “sliding a hair
dryer selector.” The second regresses the position of the bottle cap
interaction based on the three recorded states.

Aftermodel training and selection, the system awaits an interaction-
triggering gesture by analyzing live IMU information. Once de-
tected, MMG and IMU data are sent to the first classifier to classify
the interaction. Data then goes to the interaction-specific model
which regresses the range position. Finally, output is sent to the
appropriate application: in this case, it adjusts the video playback
location.
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Figure 2: The Ubiquitous Controls system: a user wearing our customwristband first generates offline training data by record-
ing the middle and extremes of an interaction. A script extracts features, trains several models, and selects and saves the best
one. In online use, we look for a “double flip” activation gesture, then send data to saved models. We classify interaction type,
then regress range position and smooth output. Finally, data is sent to an application.

Figure 3: The object interactions tested in Study 1 with their
heatmap signatures. Images from Study 2.

3.2 Hardware: Mechanomyography Wristband
Our MMG wristband sensor uses the basic theory of parallel plate
capacitors: capacitance C ∝∼ A surface area of the conductor plates
andC ∝ 1

𝑑
the distance between the plates.Wemeasure skin surface

change by treating the skin as a plate in this model. Movement at the
skin surface causes a change in 𝑑 (and thus C). A high-frequency
electrical signal “infused” on the skin by a soft pad covered in
conductive fabric on the anterior wrist is received by a matrix of
printed, flexible electrodes statically positioned above the posterior
wrist. Anatomical motion beneath the skin surface modulates 𝑑 ,
and generates a change in C localized to matrix sensors above that
anatomy. Our prototype outputs a 2-dimensional "heatmap" of these
spatial capacitive magnitude signals (see Figure 2, far left), along
with IMU signals.

3.3 Software
Weused a proprietary data collection software that prompts users to
perform pre-defined states within the range of a gesture (see Figure
2, far left). Timestamped MMG-heatmap and IMU data is written to
a csv file upon completion of a recording. For both the high-level
interaction discrimination and the regression of the range-state we
train ML models on the raw MMG-heatmap and IMU data along-
side statistical features such as z-score and mean. We use a linear
discriminant analysis (LDA) classifier to discriminate between in-
teraction types and train linear regression models to interpolate
values for continuous range interaction in live scenarios. Trained
models are n-fold cross-validated, per user. In live mode, we detect a
“double-flip” activation gesture [25] using the IMU gyro magnitude.
Then, we determine what interaction a user is performing (e.g.,
palmar slide vs twiddle) using features from single heatmap/IMU
frames (see Figure 3 for heatmap signatures of different interac-
tions). Finally, we regress range position within the interaction,

smooth using an empirically-tuned 1-Euro Filter [5] and send ex-
tracted interactions to an application.

4 EVALUATION
We performed two user studies. Study 1 was a data collection with
10 participants and an offline analysis to establish the feasibility
and parameters of our approach. Study 2 assessed the usability of
our system in a real-time scenario with 8 users who were tasked to
interactively match prompts on a virtual slider, a knob widget, and a
zoomable canvas using Ubiquitous Controls and freehand gestures.
Participants were given complete freedom of choice for gestures
and objects in Study 2 to apply to a more ubiquitous environment.

In Study 1, our classifiers robustly distinguished 6 targeted in-
teraction types (see Figure 3), with a mean accuracy of 99.4 % per
user. To evaluate range state prediction accuracy we compared the
mean accuracies of 6 classification model structures for 3–5 state
ranges (LDA, classification and regression trees (CART), logistic
regression, naïve bayes classifiers, and linear support vector classi-
fication (SVC)). For all 6 interactions, the mean accuracies within
3-states were between 89.7–98.5 % using the model with the highest
accuracy for each user/interaction combination.

In Study 2, most users could successfully control all widgets
using both objects and freehand gestures. There were no significant
differences between Ubiquitous Controls and freehand gestures
in terms of input time, number of matched prompts, model fit, or
interaction type discrimination accuracy. Three users preferred
Ubiquitous Controls, three preferred freehand gestures, and two
declared that it depends upon the situation.

Many users highlighted state reproducibility and haptic feedback,
saying the “force made it easier to control” (P7) pinching with
a rubber band versus freehand, or that feedback from a screw-
top lid “lets you know where you are on the thing” (P4). Four of
eight observed unique freehand gestures were “mimes” of object-
supported gestures, whether they came before or after the object-
supported condition in the study ordering. One user explained the
“mime” version was easier, because they could put their hand in any
position and not worry about where the object would go (P5), or
because they had a motion in mind but didn’t know an object with
the right affordances (P3).

Many users explicitly mapped an object interaction or gesture
to a widget’s visual appearance or existing use in the wild. Users
mentioned “if it’s a video player, I’d like it to be linear” (P4), or
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Figure 4: Users in Study 2 had various interesting strategies
to interact. One used an unpowered oscilloscope (A). An-
other used both hands to precision-set a combination lock
(B). Another precision input was a non-digital pair of brass
calipers (C). One user’s “squeeze” object, a thin plastic cup,
broke through use as an input (D).

"I’ve turned the knob of a stereo, so I know that a bottlecap is more
consistent with the experience [than a linear control]" (P3).

Our system’s treatment of object-supported interactions did al-
ways not map well to users’ understanding of how inputs work. For
example, P1 used a twistable knob on an unpowered oscilloscope
on their desk as an input: during training, they twisted it using
mainly their wrist, while during testing they used mainly their
fingers. In normal use of the oscilloscope, these methods would
behave identically: however in our system they do not. We map
an affordance to a range, and even a single object component may
have multiple affordances (see Figure 4A).

On using objects as inputs, one user suggested they would carry
a “collection of... favourite objects that were comfortable to use,”
or a multifunction input object (e.g., fidget cube) designed for this
type of interaction (P6). Conversely, another mentioned that any
object they have has to be “worthy of carrying with me,” suggesting
that an object only for input would not be worth the space in their
bag or pockets (P2).

In the end, it seems both object-supported and freehand gestures
have a role in pervasive interaction. If users are on the move, it
might make more sense to leverage freehand gestures. We would
like to explore this further in future work.

5 DISCUSSION
We envision that giving computational meaning to familiar, unaug-
mented objects will help interactive systems vanish into the fabric
of reality. Ubiquitous Controls brings that reality one step closer,
but it is not without a variety of yet-unanswered challenges and
opportunities. Below, we summarize challenges encountered and
opportunities discovered during our implementation of Ubiquitous
Controls.

Discrete Events Continuous, range-based inputs are not the
only type used in modern systems [4]: they must work in concert
with discrete “events” like selecting a file or stopping an audio
track. We consider events to be a special case of sequential, time-
bounded range inputs, as users perform a sequence of continuous
actions within a specific period of time. While we already use the
“double flip” event to activate and deactivate range recognition,
further work such as null set collection and dynamic time warping
is needed to thoughtfully trigger general-purpose events.

Midas Touch As computation becomes distributed and every-
day objects serve both analog and digital functions, we encounter

the so-called “Midas Touch” problem, in which a computer must
distinguish between a functional interaction and an intentional input
with an object [7]. The ideal solution does not require a specific
gesture to initiate recognition: this solution, however, is very de-
pendent upon the available cues.

Dynamic and Configurable Mapping The distributed nature
of input and output will also introduce challenges of mapping,
in which paradigms for end user programming will need to be
introduced to allow for tying a specific input to a specific output.
All of our tested interactions included explicitly-coded mappings,
in which the minimum value of a physical range is permanently
connected to the minimum value of a digital range, and interactions
are 1:1. More subtlety may be desirable: the abilities to map sub-
ranges, to dynamically map physical and digital inputs, or to choose
a different gesture according to the situation (working out vs. lying
in bed) each contribute to a personal mapping experience where
the interface bends to meet the user’s intentions.

Meaningful, pervasive mapping techniques coupled with Ubiqui-
tous Controls may also allow more hygienic, personal interactions
with public displays: one’s own items can be leveraged in lieu of a
public touchscreen.

Device Reuse An interesting corollary of re-purposing existing
object affordances is reprogramming existing input devices for new
use cases. After all, a disconnected game controller is akin to a
high-quality fidget cube: both are primed with interesting physical
mappings. A user could map the brightness of their living room
lights to the roll of a mouse wheel, adjust which cooktop burner
is active by thumbing a joystick, or just reuse a favourite PS/2
peripheral with a new machine without needing an adapter. For
accessibility reasons, allowing a user to reuse an object or input
device they are familiar with for new and arbitrary interactions is
a boon.

Assemblage Relocating a component’s sensing from the device
to the user also enables a new way to prototype input devices:
assemblage of existing affordances held together by clay or tape is
easy to reconfigure and immediately test, similar to the concept of
Makers’ Marks [27].

6 CONCLUSION
We presented Ubiquitous Controls, a prototype system for captur-
ing and classifying interactions with the mechanical affordances of
everyday objects. We described the hardware and software compo-
nents of this system, and its evaluation with users through a data
collection and a study. We anticipate that measuring the dynamic
interactions between hands and everyday objects will provide a
powerful framework for ubiquitous computing, and hope that our
work has opened fruitful opportunities and questions in this space.
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