Haptic Proxies for Virtual Reality: Success Criteria and Taxonomy

Niels Christian Nilsson
Aalborg University
Copenhagen, Denmark
ncn@create.aau.dk

André Zenner
Saarland University & German
Research Center for Artificial
Intelligence (DFKI)
Saarbrücken, Germany
andre.zenner@dfki.de

Adalberto L. Simeone
KU Leuven
Leuven, Belgium
adalberto.simeone@kuleuven.be

Donald Degraen
Saarland University & German
Research Center for Artificial
Intelligence (DFKI)
Saarbrücken, Germany
donald.degraen@dfki.de

Florian Daiber
German Research Center for Artificial
Intelligence (DFKI)
Saarbrücken, Germany
florian.daiber@dfki.de

Figure 1: Visualization of the two orthogonal criteria for successful use of haptic proxies in VR: sufficient similarity and complete co-location. Haptic proxies are highlighted with blue and virtual objects with orange.

ABSTRACT

In this position paper we discuss three criteria for successful use of haptic proxies in virtual reality, present a taxonomy of techniques using haptic proxies, and argue that it is only a subset of these techniques that are useful when relying on everyday items as haptic proxies.

CCS CONCEPTS

• Human-centered computing → Virtual reality: Haptic devices.

KEYWORDS

virtual reality, haptic proxies, physical props

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EPO4VR'21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).

ACM Reference Format:
1 INTRODUCTION
Physical props serving as proxies for virtual objects (haptic proxies) offer a cheap, convenient, and compelling way of delivering kinesthetic, proprioceptive, and cutaneous feedback to users immersed in virtual reality (VR). In this position paper, we discuss three criteria for successful use of haptic proxies in VR, present a taxonomy of techniques relying on haptic proxies, and discuss the utility of these techniques when it comes to relying on everyday objects as haptic proxies.

2 SUCCESS CRITERIA FOR HAPTIC PROXIES IN VR
Most benefits of using haptic proxies as a source of touch in VR can be attributed to the fact that users interact with physical objects. Physical objects eliminate the need for simulating material and geometric properties, such as texture, hardness, weight, shape, and size. However, the limitations of haptic proxies are also imposed by the use of physical objects. The utility of haptic proxies decreases in proportion to the complexity of the virtual environment (VE). As VEs grow more complex, a larger number of haptic proxies with virtual reality (VR). In this position paper, we discuss three criteria to ensure skill transfer, whereas the requirements may be relaxed is likely to vary depending on the type of VR application. For example, some VR training applications may demand perfect realism to ensure skill transfer, whereas the requirements may be relaxed somewhat in relation to some entertainment applications, especially if the virtual scenario does not abide by the rules of physical reality [16].

3 TAXONOMY AND RELATED WORK
The taxonomy divides techniques relying on haptic proxies into four broad categories based on how they address one or more of the three criteria outlined in the previous section. The categorization is based on two dichotomous categories pertaining to two orthogonal dimensions. First, we distinguish between techniques based on what reality is being manipulated. Is the physical or virtual environment being manipulated? Second, we distinguish between techniques based on when the manipulation occurs. Is the manipulation performed offline before the user is exposed to the VE or real time during exposure? Figure 2 visualizes the taxonomy, which we describe in more detail throughout the following.

3.1 Offline Physical Manipulation
Haptic proxies can be deliberately made to replicate virtual objects or VEs. For example, Insko et al. [11] physically replicated a simple interior VE using wooden boards and Styrofoam walls. One of our previously studied systems incorporated physical props designed so as to allow for the interaction with virtual objects inside a VR application for immersive data exploration [29]. Work involving physical replication is often limited to relatively simple tasks that only require interaction with a single virtual object [8]. Moreover, recent work has sought to automatize the design and construction of proxies approximating the properties of virtual objects without the need for near-perfect physical replicas [7, 9, 31].

3.2 Offline Virtual Manipulation
Offline virtual manipulation implies that virtual objects and VEs are modelled to match the physical environment before the application is run. This approach addresses the criteria of sufficient similarity or complete co-location, at the expense of virtual variety and complexity. Simeone et al. [16] proposed that for some applications it is sufficient to virtually replicate the layout of the physical environment without perfectly replicating all virtual objects (e.g., the bridge of a space ship may be modelled to fit a living room and a torch may serve as a proxy for a lightsaber). Such Substitutional Realities give developers a larger degree of freedom since the criterion of sufficient similarity is relaxed somewhat. Similarly, Sra et al. [17] showed that the layout of physical environments can serve as the basis for large procedural generated VEs, which can be navigated on foot as long as the VEs include barriers that restrict virtual movement.

3.3 Real-Time Physical Manipulation
Because head-mounted displays (HMDs) deprive users of visual information about the physical environment, this environment can be manipulated during runtime. Robotic arms can be used to ensure correct positioning of haptic proxies with varying textures [1]; thus addressing both the criteria of sufficient similarity and complete co-location. Drones have been used in a similar manner to enable direct interaction with virtual objects [10] and to enable compelling contact forces when interaction is performed indirectly.
Moreover, approaches such as the iTurk [5] subtlety force users to reconfigure haptic proxies so they can serve as a proxies for different virtual objects. Zenner and Krüger [25] proposed Dynamic Passive Haptic Feedback which involves augmenting physical props with mechanical actuators to modulate haptic perception. For example, the Shifty [25] changes the prop’s internal weight distribution to manipulate the inertia experienced when handling different objects, and Dragon [26] changes the haptic proxy’s surface area to elicit the impression of interacting with objects with varying scales, materials, and fill states. Moreover, physical props augmented with vibrotactile actuators can be used to approximate contact forces during virtual impacts [8, 22].

3.4 Real-Time Virtual Manipulation

Visual dominance makes it possible to subtly affect haptic perception by manipulating the VE or users’ virtual bodies when they are wearing a HMD. Sufficient similarity can be addressed using Redirected Touching [12] and Resized Grasping [4], which warps the mapping between users’ real and virtual hand and finger movements to enable virtual objects of different shape or size to be mapped onto a single haptic proxy. To ensure complete co-location, walking users can be repeatedly steered back to the same haptic proxies through Redirected Walking, which manipulate either the mapping between the users’ real and virtual movements [13] or the virtual architecture [19]. Complete co-location of objects in peripersonal space has been addressed in a similar manner by warping VEs, users’ virtual arms, or both using Haptic Retargeting [3].

Figure 2: Taxonomy for categorizing techniques using haptic proxies in VR. The vertical axis subdivides the techniques based on what reality is being manipulated (physical or virtual), and the horizontal subdivides the techniques based on when the manipulation is performed (offline or real-time).

Moreover, change blindness can be leveraged to remap virtual objects onto haptic proxies behind users’ backs [14], and redirected touching has been combined with two haptic proxies (a tool and a surface) to provide compelling contact forces during tool-mediated interaction in VR [18]. To support researchers and developers in crafting solutions that employ haptic retargeting, we recently proposed an open-source hand redirection toolkit [24]. Similar efforts were taken by the redirected walking research community with the publication of a toolkit for redirected walking [2].

3.5 Combining Techniques of Different Categories

The combination of techniques from different categories is not excluded and bears great potential [28]. In recent research that investigated the scenario of haptically conveying the weight distribution of a virtual object, we could demonstrate and validate the benefits of combining real-time physical and real-time virtual manipulation. In this scenario, a technique that combined a weight-shifting proxy (i.e. real-time physical manipulation in the form of dynamic passive haptics) and haptic retargeting (i.e. real-time virtual manipulation in the form of hand redirection) was compared to the individual techniques. The results highlight that the combination of both concepts can better solve the challenges of similarity and co-location than the individual techniques alone can do [28, 30].

4 EVERYDAY HAPTIC PROXIES FOR VR

As evident from the previous section, recent years have seen increasing interest in the use of haptic proxies as a means of delivering virtual touch. Nevertheless, it is worth questioning the utility of some of these techniques if everyday items are to be integrated in virtual experiences. Everyday settings, such as homes, workplaces, or schools, impose additional restrictions and present novel challenges.

Offline physical manipulation is tantamount to the creation of haptic proxies based on the objects present in the VE. Because most everyday items cannot be physically manipulated, the utility of offline physical manipulation is limited. However, a small selection of everyday items may be subject to offline physical manipulation. For example, the HapTwist [31] makes it possible to use the same reconfigurable toy (Rubik’s Twists) as a haptic proxy for multiple virtual objects.

On the other hand, **offline virtual manipulation**, such as Substitutional Reality, may achieve acceptable levels of co-location and similarity. However, the design space for Substitutional Reality remains relatively unexplored [15]. Even though a growing body work has explored the extent to which users will tolerate mismatches between real and virtual objects and how varying levels of discrepancy affect behavior and performance [4, 6, 8, 16, 22, 27], these effects are not fully understood, and it remains uncertain how they vary across applications demanding different levels of realism. It is still difficult to dynamically generate VEs from physical environments, and it is not straightforward to differentiate between objects that can be used for interaction and the background VE. Finally, there is a need for authoring tools enabling creation of
virtual content that can be meaningfully deployed across varying physical environments.

Concerning real-time physical manipulation, the use of everyday items is still constrained by the limited ability to modify and augment them with fragile mechanical parts. However, it is conceivable that everyday items can be augmented relatively easily with simple vibrotactile actuator modules, which can be used to manipulate perception of haptic properties and approximate contact forces during virtual interactions. Recent research also started to explore how everyday robots could ensure co-location in proxy-based VR scenarios [20, 21]. Moreover, approaches relying on human actuation, such as the iTurk [5], could be used to subtly repurpose everyday haptic proxies.

The techniques belonging to the category real-time virtual manipulation are perhaps the most promising in relation to everyday haptic proxies. Specifically, because the manipulation is entirely virtual, there are no limits to what everyday items can be incorporated into the VE. Furthermore, these approaches can be combined with Substitutional Realities to enable incorporation of the entire everyday setting while allowing for interaction with a larger number of virtual objects with varying haptic properties. The availability of open-source software toolkits for hand redirection [24] and redirected walking [2] have potential to lower the barriers for developers and researchers to experiment with integrating everyday proxies in VR. However, in an everyday setting, real-time virtual manipulation also necessitates dynamic generation of virtual content from physical environments, and several of these approaches are contingent upon information about what objects the user will interact with next. This introduces the need for highly specific scripted scenarios or the ability to reliably predict user behavior.

Finally, it is unlikely that any one approach will be able to simultaneously ensure sufficient similarity, complete co-location, and compelling contact-forces. Thus, it is necessary for future work to explore how different techniques can be combined dynamically based on information about the state of physical and virtual environments and the users’ current and future actions.

ACKNOWLEDGMENTS

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 425868555; 450247716 and is part of Priority Program SPP2199 Scalable Interaction Paradigms for Pervasive Computing Environments.

REFERENCES

[24] André Zennner, Hannah Maria Kriegler, and Antonio Krüger. 2021. HaRT - The Substitutional Realities to enable incorporation of the entire everyday setting while allowing for interaction with a larger number of virtual objects with varying haptic properties. The availability of open-source software toolkits for hand redirection [24] and redirected walking [2] have potential to lower the barriers for developers and researchers to experiment with integrating everyday proxies in VR. However, in an everyday setting, real-time virtual manipulation also necessitates dynamic generation of virtual content from physical environments, and several of these approaches are contingent upon information about what objects the user will interact with next. This introduces the need for highly specific scripted scenarios or the ability to reliably predict users’ behavior.

Finally, it is unlikely that any one approach will be able to simultaneously ensure sufficient similarity, complete co-location, and compelling contact-forces. Thus, it is necessary for future work to explore how different techniques can be combined dynamically based on information about the state of physical and virtual environments and the users’ current and future actions.

ACKNOWLEDGMENTS

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 425868555; 450247716 and is part of Priority Program SPP2199 Scalable Interaction Paradigms for Pervasive Computing Environments.

